Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 606(Pt 1): 298-306, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34392027

RESUMO

The molecular surface properties of zwitterionic polymer coatings are central to their ultra-low fouling properties and effectiveness as steric stabilizers in concentrated salt solutions. Here, Surface Force Apparatus measurements quantified the molecular forces between end-grafted poly(sulfobetaine) methacrylate thin films and mica, as a function of the chain grafting density and ionic strength. These results demonstrate that, at the ionic strengths considered, end-grafted poly(sulfobetaine) films can be described by models for polymers in good solvent. Parameters determined from data fits to the Milner-Witten-Cates or Dolan and Edwards models for dense or dilute chains, respectively, varied with ionic strength, in ways that reflect poly(sulfobetaine) swelling and the increased excluded volume strength of chain segments. These force measurements provide new insight into how polymer coverage and salt cooperate to regulate repulsive poly(sulfobetaine) steric barriers. These findings have implications for the design of grafted poly(sulfobetaine) as colloidal stabilizers or nonfouling surface coatings.


Assuntos
Betaína , Metacrilatos , Silicatos de Alumínio , Betaína/análogos & derivados , Concentração Osmolar
2.
Tissue Eng Part A ; 24(5-6): 418-431, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28825364

RESUMO

Human induced pluripotent stem cells (hiPSCs) emerge as a promising source to construct human brain-like tissues, spheroids, or organoids in vitro for disease modeling and drug screening. A suspension bioreactor can be used to generate large size of brain organoids from hiPSCs through enhanced diffusion, but the influence of a dynamic bioreactor culture environment on neural tissue patterning from hiPSCs has not been well understood. The objective of this study is to assess the influence of a suspension bioreactor culture on cortical spheroid (i.e., forebrain-like aggregates) formation from hiPSCs. Single undifferentiated hiPSK3 cells or preformed embryoid bodies were inoculated into the bioreactor. Aggregate size distribution, neural marker expression (e.g., Nestin, PAX6, ß-tubulin III, and MAP-2), and cortical tissue patterning markers (e.g., TBR1, BRN2, SATB2, and vGlut1) were evaluated with static control. Bioreactor culture was found to promote the expression of TBR1, a deep cortical layer VI marker, and temporally affect SATB2, a superficial cortical layer II-IV marker that appears later according to inside-out cortical tissue development. Prolonged culture after 70 days showed layer-specific cortical structure in the spheroids. Differential expression of matrix metalloproteinase-2 and -3 was also observed for bioreactor and static culture. The altered expression of cortical markers by a suspension bioreactor indicates the importance of culture environment on cortical tissue development from hiPSCs.


Assuntos
Antígenos de Diferenciação/biossíntese , Reatores Biológicos , Técnicas de Cultura de Células , Células-Tronco Pluripotentes Induzidas/metabolismo , Esferoides Celulares/metabolismo , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Esferoides Celulares/citologia
3.
Nat Commun ; 8(1): 1273, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29097695

RESUMO

Biomacromolecules rely on the precise placement of monomers to encode information for structure, function, and physiology. Efforts to emulate this complexity via the synthetic control of chemical sequence in polymers are finding success; however, there is little understanding of how to translate monomer sequence to physical material properties. Here we establish design rules for implementing this sequence-control in materials known as complex coacervates. These materials are formed by the associative phase separation of oppositely charged polyelectrolytes into polyelectrolyte dense (coacervate) and polyelectrolyte dilute (supernatant) phases. We demonstrate that patterns of charges can profoundly affect the charge-charge associations that drive this process. Furthermore, we establish the physical origin of this pattern-dependent interaction: there is a nuanced combination of structural changes in the dense coacervate phase and a 1D confinement of counterions due to patterns along polymers in the supernatant phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...